Υπάρχουν πολλά ακόμη πεδία στο data analytics που μπορούν να εξερευνηθούν μετά τις βασικές έννοιες που έχουμε ήδη καλύψει. Παρακάτω παρατίθεται μια οργανωμένη λίστα με θεματικές ενότητες
1. Data Preparation & Cleaning
- Missing values handling (imputation methods)
- Data normalization & standardization
- Feature encoding (one-hot, label encoding)
- Data transformation (log, box-cox, binning)
- Dealing with imbalanced data
2. Exploratory Data Analysis (EDA) – Προχωρημένα
- Multivariate analysis
- Dimensionality reduction (PCA, t-SNE)
- Feature selection techniques
- Time series exploration (seasonality, trend, decomposition)
3. Statistical Methods
- Hypothesis testing (t-test, χ², ANOVA)
- Probability distributions
- Confidence intervals
- Statistical significance & p-values
4. Machine Learning Basics (εάν θες να πας πιο πέρα)
- Supervised learning (regression, classification models)
- Unsupervised learning (clustering, anomaly detection)
- Model evaluation metrics (accuracy, precision, recall, ROC-AUC)
- Cross-validation
- Overfitting / underfitting
5. Time Series Analysis
- ARIMA / SARIMA
- Forecasting principles
- Smoothing methods (moving averages, exponential smoothing)
6. Data Visualization & Reporting
- Principles of effective visualization
- Dashboards (Power BI / Tableau)
- Chart selection best practices
- Storytelling with data
7. Big Data Concepts (προαιρετικά)
- Hadoop / Spark basics
- ETL pipelines
- Distributed computing
- Data lakes vs data warehouses
8. SQL & Databases
- JOINs (inner, outer, cross)
- Window functions (ROW_NUMBER, RANK, PARTITION BY)
- Subqueries & CTEs
- Indexing & query optimization
9. Python for Data Analytics
- Pandas (groupby, merges, pivot tables)
- NumPy (vectorization, broadcasting)
- Visualization libraries (Matplotlib, Seaborn, Plotly)
10. Data Ethics & Governance
- Data privacy (GDPR basics)
- Bias in datasets
- Responsible data use
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου